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Summary: This document reports on the creation and use of the ESS
Sample Design Data File (SDDF). The SDDF is routinely generated
by an ESS country’s National Coordinator after fieldwork has finished.
It includes information on the implemented sample design such as in-
clusion probabilities and clustering. As such, it serves the sampling
team with the data required for computation of design weights, de-
sign effects and as a general basis for benchmarking the quality of
sampling. The ESS analyst may use it for several purposes such as
incorporating cluster information in her analyses. This documentation
aims at clarifying important issues connected with the creation and
the use of the SDDF.



1 Included Variables

In the SDDF, information is given on a set of six variables for every
country and every ESS round1. These variables are CNTRY, IDNO,
STRATIFY, PSU, SAMPPOIN, and PROB. They are described in detail
in the following section.

1.1 CNTRY

The two-letter code country abbreviation string variable identi-
fies different ESS countries. When merging SDDF data to the in-
tegrated file using IDNO, CNTRY must be used in combination with
IDNO to avoid ambiguous matches on IDNO since there might exist
identical IDNOs in different countries.

1.2 IDNO

The individual identification number serves as a unique sample
person identifier within a given country. It can be used to merge
sample data and the SDDF from the same country (see above).

1.3 STRATIFY

This variable is a marker for the combination of all stratification
variables implemented in a certain country. If there is, for exam-
ple, explicit stratification by regions as well as implicit stratifica-
tion by systematic sampling of addresses, STRATIFY combines
the labels of each of the two single stratification variables into one
string (e.g. “23-42” indicating stratum 23 on the explicit stratifica-
tion variable and stratum 42 on the implicit stratification variable).

1.4 PSU

This variable includes information on the primary sampling unit
(i.e. cluster). Respondents belonging to the same primary sam-
pling unit will have the same value on PSU. This variable is mainly
useful when considering the design effect due to clustering.

1.5 SAMPPOIN

In some countries, PSUs are not the ultimate clusters. In these
cases, a lower-level structure, called sampling point, exists. A
good example for this separation is the ESS round II sample data
in Portugal. Here, a total of 100 localities (PSUs) was surveyed.

1The user may also wish to consult the sampling plans provided for each coun-
try at http://ess.nsd.uib.no
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However, within each locality, a certain number of starting ad-
dresses was sub-sampled (SAMPPOIN) which form the ultimate
clusters.

1.6 PROB

The product of a respondent’s inclusion probability on each stage
is captured by PROB. It can thus serve as a basis for weighting
issues.

2 Using the SDDF

SDDF data can be used to enrich and improve your analyses. The
most common use will be to generate weights as well as includ-
ing PSU information in a multi-level model or to estimate design
effects for specific variables or for variance estimation. The fol-
lowing sections explains some of these uses.

2.1 Using Inclusion Probabilities to compute Weights

As mentioned above, PROB stores the product of a sample ele-
ment’s inclusion probabilities on every stage. For convenience of
illustration, values of PROB shall be denoted by πi, where i =
1, . . . , n and n is the sample size.

The inverse of πi is simply the raw design weight and is formally
defined as

wi =
1
πi

. (1)

Example:
In this example, we see how inclusion probabilities of differ-
ent stages transform to PROB and how this overall inclusion
probability is transformed to diverse weights. In this and all
following examples, ESS round II data from France are used
for illustration. The sample design can be summarized as fol-
lows: On the first stage, 200 primary sampling units (commu-
nities), are sampled.
A PSU has a given inclusion probability, denoted by PROB1.
Then, on the second stage, households are selected. Each
household also is associated a certain probability of inclusion,
PROB2. On the third stage, a respondent within a selected
household is sampled via last-birthday method. His or her
probability of inclusion is simply the inverse of the number of
persons belonging to the target population. Our study variable
shall be the overall satisfaction with life (STFLIFE). A respon-
dent may have the following characteristics:
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No. IDNO PROB1 PROB2 PROB3 STFLIFE
18 102010 .004731855 .03612479 0.25 6

The product of the three inclusion probabilities is .004731855×
.03612479 × .25 = .00004273432. Taking the inverse of this
number, we end up with a raw weight of w18 = 23400.4, which
equals the number of population units this respondent repre-
sents.

The raw weights are very huge numbers and one might want to
rescale them to a more convenient range. One possibility is to
normalize the raw design weights to the net sample size. This is
done by the following simple transformation:

w̃i = n× wi

∑n
i=1 wi

. (2)

Finally, in extreme cases, weights greater than 4.0 are truncated to
this threshold. Usually, this is necessary only in very few coun-
tries and very few cases.

Example:
We can see the difference between a weighted and an un-
weighed estimate in the following example. Le us return to the
above case and assume we computed raw weights for all sam-
ple elements. Assume we are interested in the usual Horvitz-
Thompson estimator of the sample mean which is defined by

ȳHT =
1
N

n

∑
i=1

yi

πi
=

1
N

n

∑
i=1

yi × wi

That means, we simply multiply STFLIFE with the corre-
sponding weight, take the sum over all sample elements and
divide it by the sum of weights. If we do so with our sample
data set, we get 6.44 as an estimate of the average satisfaction
with life. The unweighted sample mean, 1

n ∑n
i=1 yi, however, is

6.37 and thus deviates from the weighted one.

3 Using PSU Identifiers for the Estimation of Design Effects

Design effects arise from a variety of divergences in real-world
sample surveys from the ideal of simple random sampling. Most
prominent and intuitively appealing is the design effect due to clus-
tering, abbreviated in the following by deffc. Due to the fact that
respondents living in the same geographical area (PSU or sam-
ple point) are socialised in similar ways, their responses to sur-
vey questions resemble each other more than they resemble the
responses of another geographical area. However, the fact that
the responses are more similar implies that, in terms of precision,
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the cluster sample data correspond to simple random sample data
with less responses. This in turn means that the variance and also
the standard error of an estimator, θ̂, is underestimated by the naive
formula. The factor by which the variance is underestimated is the
design effect.

The most basic and thus best known definition of the design effect
is given in Kish (1965) where deffc is defined as

deffc =
Varclu(θ̂)
Varsrs(θ̂)

, (3)

where Varclu(θ̂) is the variance of the estimator θ̂ under the actual
cluster design and Varsrs(θ̂) is the variance of the same estimator
under a (hypothetical) simple random sample. Kish (1965) also
showed that this quantity can be expressed as

deffc = 1 + (b̄− 1)ρ, (4)

where b̄ is the average cluster size and ρ is the intra-class correla-
tion coefficient. Gabler et al. (1999) and Gabler et al. (2006) showed
that there exists a model-based justification for the above formula
which yields a model-based design effect. It is the product of
the design effect due to unequal selection probabilities (deffp) and
deffc and is defined as

deff = deffp × deffc = n
∑n

i=1 w2
i

(∑n
i=1 wi)

2 × [1 + (b∗ − 1)ρ] , (5)

where ρ is the intraclass correlation coefficient and

b∗ =
∑C

c=1

(
∑bc

j=1 wcj

)2

∑n
i=1 w2

i
, (6)

where c = 1, . . . , C is an index for clusters and j = 1, . . . , bc de-
notes elements within a given cluster c of size bc.

Note that it makes no difference which type of design weights
are used, normalized or raw weights. However, as a rule, we use
normalized weights, so we set wi = w̃i and wcj = w̃cj in (5) and
(6).

The information on inclusion probabilities and on PSU given in
the SDDF enables the user to estimate the design effect due to
unequal selection probabilities as well as the design effect due to
clustering.
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Example:
Returning to the ESS round II data of France, according to (5)
d̂effp is computed in the following way:

1. compute the sum of squared weights: ∑n
i=1 w̃2

i =
2157.239,

2. compute the squared sum of weights: (∑n
i=1 w̃i)

2 =
3261636,

3. insert the values into the formula: d̂effp = 1806 ×
2157.239
3261636 ≈ 1.19.

For estimation of deffc for a specific variable, we first have to
reduce the dataset to only those cases where the variable under
study is not missing.

Example:
Let us again take the ESS II data of France. We want to estimate
d̂effc for STFILFE. We just need to

1. compute b∗ = 19604
2155 = 9.09,

2. calculate (e.g. the ANOVA) estimator of ρ, which is
ρANOVA = 0.0373,

3. and then insert these values into the formula: d̂effc =
1 + (9.09− 1)× 0.0373 ≈ 1.3

The design effect of STFLIFE is simply the product of d̂effp and
d̂effc as in (5).

Example:
The design effect for the French ESS II STFLIFE variable then
is the product of d̂effp and d̂effc = 1.19× 1.3 = 1.547.

This means that the true variance of the sample mean for STFLIFE
is 1.547 times larger than the naive formula Var(x̄) = Var(x)

n would

suggest. It thus also implies that the standard error is 1.24 (
√

d̂eff)
times as large as the one estimated under the assumption that the
data come from a simple random sample.
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